If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-43x^2+553=0
a = -43; b = 0; c = +553;
Δ = b2-4ac
Δ = 02-4·(-43)·553
Δ = 95116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{95116}=\sqrt{4*23779}=\sqrt{4}*\sqrt{23779}=2\sqrt{23779}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{23779}}{2*-43}=\frac{0-2\sqrt{23779}}{-86} =-\frac{2\sqrt{23779}}{-86} =-\frac{\sqrt{23779}}{-43} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{23779}}{2*-43}=\frac{0+2\sqrt{23779}}{-86} =\frac{2\sqrt{23779}}{-86} =\frac{\sqrt{23779}}{-43} $
| 9x^2=4x-15 | | 9x^2=4x-15 | | 21.4r=10 | | Z=83+8z= | | 4×+5y=7 | | -2-7(2m+3)=25-8 | | 9x-x=16x | | 8−4x=−32 | | 5x-150=1,200 | | x=100(0.025)^10 | | 13=1+6n-2n | | 13=1=6n-2 | | 3/11-x/2=2x/111/4 | | 2x+8+3x+5=123° | | 7-(-3x/5)=-1 | | 7-(-3x/5=-1 | | 4³x-⁷=32 | | 82+(3x+14)=360 | | 82+(3x+14)=180 | | -7x-6/9=-2x | | 1696.46=3.14r(2) | | 82=(3x+14) | | 82+(3x+14)=90 | | 1696.46=3.14r(2)•1.25 | | 82+(3x-14)=360 | | 82+(3x-14)=90 | | 1357.168=3.24r(2) | | 82+(3x-14)=180 | | (4y-11)=(2y+13) | | 7.7x-26=3.5+16 | | 5x+3=4x−7,x= | | /3+(5/12x)-2=6(2/3) |